

BRIDGING THE GAP BETWEEN PHARMACOMETRICIANS AND **STATISTICIANS IN CLINICAL** PHARMACOLOGY AND **THERAPEUTICS**

PR FRANCE MENTRÉ, PHD, MD UNIVERSITY PARIS DIDEROT – INSERM – IAME BIOSTATISTICAL MODELLING AND PHARMACOMETRICS

ASCPT - March 2017

Outline

- **1. Pharmacometrics**
- 2. Statisticians in pharmacometrics
- **3.** Model evaluation: a core set of graphs
- 4. Design in pharmacometrics
- **5.** Dose of favipiravir in Ebola infection
- 6. Bridging the gap between statisticians and pharmacometricians

1. PHARMACOMETRICS

Started by Lew Sheiner

An impressive scientist who created a new discipline!

• Web of Science

- 234 publications
- 13,070 citations
- H index = 59

Impact of the Pharmaceutical Sciences on Health Care: A Reflection over the Past 50 Years

Journal of Pharmaceutical Sciences, Vol. 101, 4075-4099 (2012)

MALCOLM ROWLAND,^{1,2} CHRISTIAN R. NOE,³ DENNIS A. SMITH,^{4,5} G. T. TUCKER,^{6,7} DAAN J. A. CROMMELIN,⁸ CARL C. PECK,² MARIO L. ROCCI Jr.,⁹ LUC BESANÇON,¹⁰ VINOD P. SHAH¹⁰

Figure 5. Timeline of introduction of some key developments and guidances in drug regulation.

Pharmacometrics in the world

PHARMACOMETRICS

Conferences

- PAGE (1992-)
- ACOP (2005-)
- WCOP (2012-)

World Conference on Pharmacometrics

• Book

- Pharmacometrics (2007)
- Journal
 - CPT: PSP (2012-)
- Society

ISOP (2012-)

An Official Journal of ASCPT and ISOP CPT: Pharmacometrics & Systems Pharmacology

From PopPK to MID3

- Population pharmacokinetics (PopPK)
- Population pharmacokinetics /pharmacodynamics (Pop PKPD)
- Nonlinear mixed effect models (NONMEM, NLMEM)
- Modelling and Simulation (M&S)
- Pharmacometrics (PMX)
- Model Based Drug Development (MBDD)
- Model Informed Drug Development (MIDD)
- Model Informed Drug Discovery and Development (MID3)

Model Based Drug Development

nature publishing group

Model-based Drug Development

RL Lalonde¹, KG Kowalski², MM Hutmacher¹, W Ewy², DJ Nichols¹, PA Milligan¹, BW Corrigan¹, PA Lockwood¹, SA Marshall¹, LJ Benincosa¹, TG Tensfeldt¹, K Parivar¹, M Amantea¹, P Glue¹, H Koide¹ and R Miller¹

The low productivity and escalating costs of drug development have been well documented over the past several years. Less than 10% of new compounds that enter clinical trials ultimately make it to the market, and many more fail in the preclinical stages of development. These challenges in the "critical path" of drug development are discussed in a 2004 publication by the US Food and Drug Administration. The document emphasizes new tools and various opportunities to improve drug development. One of the opportunities recommended is the application of "model-based drug

development (MBDD)." This paper discusses what constitutes the key elements of MBDD and how these elements should fit together to inform drug development strategy and decision-making.

VOLUME 82 NUMBER 1 | JULY 2007 | www.nature.com/cpt

Drug development and model building Learning and confirming

Model Informed Drug Discovery and Development

Citation: CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 93–122; doi:10.1002/psp4.12049 © 2016 ASCPT All rights reserved

WHITE PAPER

Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation

EFPIA MID3 Workgroup: SF Marshall¹*, R Burghaus², V Cosson³, SYA Cheung⁴, M Chenel⁵, O DellaPasqua⁶, N Frey³, B Hamrén⁷, L Harnisch¹, F Ivanow⁸, T Kerbusch⁹, J Lippert², PA Milligan¹, S Rohou¹⁰, A Staab¹¹, JL Steimer¹², C Tornøe¹³ and SAG Visser¹⁴

This document was developed to enable greater consistency in the practice, application, and documentation of Model-Informed Drug Discovery and Development (MID3) across the pharmaceutical industry. A collection of "good practice" recommendations are assembled here in order to minimize the heterogeneity in both the quality and content of MID3 implementation and documentation. The three major objectives of this white paper are to: i) inform company decision makers how the strategic integration of MID3 can benefit R&D efficiency; ii) provide MID3 analysts with sufficient material to enhance the planning, rigor, and consistency of the application of MID3; and iii) provide regulatory authorities with substrate to develop MID3 related and/or MID3 enabled guidelines.

⁻

Pop PKPD: the beginning

- Continuous variables
- Short time scale
- Exploratory studies
- Early phases in drug development

Pharmacometrics now

Clinical end points

- Longer time scale
- Pivotal/confirming phases
- Discrete variables and time to event
- Disease progression

Results use for prediction / simulation

- Extrapolation
- Planning / Design evaluation
- Clinical trial simulation
- Decision making...

More attention to model building / estimation / uncertainties in inference

"I know nothing about statistics"

- A Pharmacometrician, yesterday

But you're fitting nonlinear mixed effect models using maximum likelihood, SAEM or MCMC, using likelihood ratio tests to determine significance, covariate search techniques, considering collinearity, performing model diagnostics, simulating new outcomes, evaluating decision criteria, using optimal design theory...

Most of these topics would scare the living crap out of a graduate statistician.

From Mike K Smith (Pfizer), ACOP7

2. STATISTICIANS IN PHARMACOMETRICS

- Estimation algorithms for NLMEM
- Statistical inference
- Model evaluation
- Optimal Design
- Decision making
- • •

Lecture Notes in Statistics

126

Geert Verbeke Geert Molenberghs (Editors)

Linear Mixed Models in Practice

A SAS-Oriented Approach

Springer

Monographs on Statistics and Applied Probability 62

Nonlinear Models for Repeated Measurement Data

Marie Davidian and David M. Giltinan

CHAPMAN & HALLICRC

1995

Chapman & Hall/CRC Handbooks of Modern Statistical Methods

Longitudinal **Data Analysis**

Edited by **Garrett Fitzmaurice Marie Davidian** Geert Verbeke Geert Molenberghs

CRC Press CONTRACTOR OF ALL PROPERTY.

Springer Series in Statistics

Geert Verbeke Geert Molenberghs

Linear Mixed Models for Longitudinal Data

Springer Series in Statistics

Geert Molenberghs Geert Verbeke

Models for Discrete Longitudinal Data

2000

2005

D Springer.

Statistics and Computing

José C. Pinheiro Douglas M. Bates

Mixed-Effects Models in S and S-PLUS

🖄 Springer

Chapman & Hall/CRC Biostatistics Series

Mixed Effects Models for the Population Approach Models, Tasks, Methods and Tools

Marc Lavielle

Development of estimation methods in NLMEM

1970	1980	1990	2000
Nonlinear regression in PK and PD NONMEM FO	Linear mixed - effects models EM – algorithm NPML FOCE Bayesian methods using MCMC	Laplacian Gaussian Quadrature ITBS/P-PHARM NPEM POPKAN PKBUGS	Limitations of FOCE New ML algorithm based on Stochastic EM: MCPEM, SAEM, QPREM

Pillai, Mentré, Steimer (2005). Non-linear mixed effects modeling - from methodology and software development to driving implementation in drug development science. *J Pharmacokin Pharmacodyn*, 32:161-83.

Mould & Upton, **Basic concepts in population modeling, simulation and model-based drug development,** CPT: Pharmacomet Syst Pharmacol Pharm Sci 2012; 1:e6.

Table 4 Timeline for population modeling software development	Table 4 Timeline	for population	modeling software	development
---	------------------	----------------	-------------------	-------------

Year	Event	Description
1972	Concept of "population pharmacokinetics"	The concept was published
1977	The first population pharmacokinetic analysis conducted	Application to digoxin data
1980	Announcement of NONMEM	An IBM-specific software for population pharmacokinetics
1984	NONMEM 77	A "portable" version of NONMEM
1989	NONMEMIII	An improved user-interface with the NMTRAN front end. NONMEM Users Guide published
1989	BUGS software group forms	Different method: Markov chain Monte Carlo method
1 991	USC*PACK	Different method: nonparametric population pharmacokinetic modeling (NPEM)
1992	NONMEMIV	New methods: FOCE

Mould & Upton, **Basic concepts in population modeling, simulation and model-based drug development,** CPT: Pharmacomet Syst Pharmacol Pharm Sci 2012; 1:e6.

Table 4 Timeline for population modeling software development

Year	Event	Description	
1992	Publication with NPEM	First publication using NPEM method	
1998	NONMEMV	New methods: mixture models	
2001	Winbugs publication	First publication using Winbugs	
2002	Publication with PKBUGs	Winbugs application designed for pharmacokinetic models	
2003	Monolix Group Forms	Different method: stochastic approximation expectation maximization (SAEM)	
2003	WinNonMix publication	Population modeling software with graphical user interface	
2006	NONMEM VI	New methods: centering, HYBRID, nonparametric	
2006	Monolix publications	First publications using Monolix	
2009	Phoenix NLME	User-friendly GUI	
2010	NONMEM 7	New methods: Bayes, SAEM, and others, parallel processing enabled	
2012	Monolix 4.1	Full-script version (MLXTRAN, XML) and/or user-friendly GUI	

Statisticians and estimation in NLMEM

Last decades

 Development of good estimation methods and fast algorithms

Present/ Future for estimation

- More complex statistical models
 - discrete data, RTTE, Markov model, joint models, dropouts, confounding, nonparametric, distributions, mixtures
- More complex mechanistic models
 - ODE, PDE, SDE....
- **Bayesian approaches** (HMC in STAN)
- Better use of computers (cloud, GPU,...)
- Engineers, Computer scientists, Mathematicians, Statisticians....
- Enhanced (and new) software tools

(Reseach) topics in statistics for NLMEM

- Uncertainty estimation and propagation
- Model evaluation
- Covariate model building
- Optimal design
- Tests and inference for 'small' samples
- Model averaging
- Joint models: prediction of event from biomarker evolution
- Pooling data from various sources
- Multiplicity and type I error control

3. MODEL EVALUATION: A CORE SET OF GRAPHS

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 87–109; doi:10.1002/psp4.12161 © 2016 ASCPT All rights reserved

TUTORIAL

Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics

THT Nguyen¹, M-S Mouksassi², N Holford³, N Al-Huniti⁴, I Freedman⁵, AC Hooker⁶, J John⁷, MO Karlsson⁶, DR Mould⁸, JJ Pérez Ruixo⁹, EL Plan¹⁰, R Savic¹¹, JGC van Hasselt¹², B Weber¹³, C Zhou¹⁴, E Comets^{1,15} and F Mentré^{1*} for the Model Evaluation Group of the International Society of Pharmacometrics (ISoP) Best Practice Committee

This article represents the first in a series of tutorials on model evaluation in nonlinear mixed effect models (NLMEMs), from the International Society of Pharmacometrics (ISoP) Model Evaluation Group. Numerous tools are available for evaluation of NLMEM, with a particular emphasis on visual assessment. This first basic tutorial focuses on presenting graphical evaluation tools of NLMEM for continuous data. It illustrates graphs for correct or misspecified models, discusses their pros and cons, and recalls the definition of metrics used.

CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 87–109; doi:10.1002/psp4.12161; published online 24 November 2016.

¹INSERM, IAME, UMR 1137, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; ²Certara Strategic Consulting, Montréal, Canada; ³Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand; ⁴Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts, USA; ⁵Dr Immanuel Freedman Inc., Harleysville, Pennsylvania, USA; ⁶Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; ⁷Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Washington, DC, USA; ⁸Projections Research Inc., Phoenixville, Pennsylvania, USA; ⁹The Janssen Pharmaceutical Companies of Johnson & Johnson, Belgium; ¹⁰Pharmetheus, Uppsala, Sweden; ¹¹Department of Bioengineering and Therapeutic Sciences, University of California – San Francisco, San Francisco, California, USA; ¹²Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands; ¹³Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA; ¹⁴Genentech, San Francisco, California, USA; ¹⁵INSERM CIC 1414, Rennes, France, University Rennes-1, Rennes, France. *Correspondence: F Mentré (france.mentre@inserm.fr)

- ISOP best practice committee has initiated a 'Model Evaluation Group' (chair France Mentré)
- Series of tutorials to provide detailed guidance for model evaluation in pharmacometrics
- First tutorial: Model evaluation for continuous data pharmacometric models
 - -Target audience: beginner modellers
 - Focus on graphical uses of evaluation tools
 - Define metrics and graphs
 - Propose a core set of graphs

GRAPHS FOR EVALUATION OF CONTINOUS NLMEM

Table 1 Various evaluation graphs in nonlinear mixed effect model^a and proposal for a core set of evaluation graphs

Graphs In co	re set if the	What to expect model is correct?	What to do if the graph does not fulfill the requirements?	
Evaluation graphs	In core set	What to expect if the model is correct?	What to do if the graph does not fulfill the requirements?	
a. Basic goodness-of-fit plots	5 √			
OBS vs xPRED, (x=C, P, I)	\checkmark			
xWRES vs Time or xPRED	\checkmark			
b. Individual fits	\checkmark			
c. EBE-based graphs	\checkmark			
d. Simulation-based graphs	\checkmark			
VPC	\checkmark			
NPD vs Time or PPRED	\checkmark			

- Population predictions/ residuals: CPRED/CWRES or PPRED/PWRES
- Individual predictions/residuals: IPRED/IWRES
- EBE: Empirical Bayes estimates

MOTIVATING EXAMPLE: 3 MODELS FOR PKPD OF WARFARIN

- PK model: One compartment model
- PD Model for PCA
 - Misspecified: Immediate effect model
 - Misspecified: Effect compartment model
 - True: Turnover model

BASIC GOF PLOTS AND INDIVIDUAL FITS

BASIC GOF PLOTS AND INDIVIDUAL FITS

Effect

BASIC GOF PLOTS AND INDIVIDUAL FITS

b Representative Individual Fits (True model – Turn–over model)

EBE-BASED GRAPHS

- Immediate effect model
- c Correlations, histogram of EBE (Misspecified delay, Immediate effect)

EBE-BASED GRAPHS

c Correlations, histogram of EBE (Misspecified delay, Effect compartment)

Effect

compartment

model

EBE-BASED PLOTS

Turnover model

c Correlations, histogram of EBE (True model – Turn–over model)

SIMULATION-BASED GRAPHS

Immediate effect model

SIMULATION-BASED GRAPHS

SIMULATION-BASED GRAPHS

Turnover model

Discussion on model evaluation

- To detect one type of misspecification, one evaluation graph may be sufficient
- To completely evaluate a model, a core set of evaluation graphs should be examined
- R script for graphs provided

PERSPECTIVES

- Two on-going tutorials about model evaluation
 - for discrete data
 - time-to-event data
- Other tutorials about advanced methods/problems in model evaluation (adaptive designs, censored data, etc.)

4. DESIGNS IN PHARMACOMETRICS

- Last decades: Several methods/software for maximum likelihood estimation of population parameters using NLMEM
- Problem beforehand: choice of 'population' design
 - get precise estimates / adequate power
 - number of individuals?
 - number of sampling times/ individuals?
 - sampling times?
 - other design variables (doses, etc...)
 - Simulation (CTS): time consuming

Asymptotic theory: expected Fisher Information Matrix (Mentré, Mallet, Baccar, *Biometrika*, 1997)

NIH aims to beef up clinical trial design as part of new data sharing rules

By Jocelyn Kaiser | Sep. 16, 2016 , 12:00 PM

Drug companies and academic researchers will have to step up their public reporting of clinical trial results under new federal policies released today. The National Institutes of Health (NIH) in Bethesda, Maryland, also laid out a new plan for submitting clinical trial proposals that aims to beef up the rigor of the studies.

Researchers can no longer submit an unsolicited idea, but must respond to a request for applications that will include specific design requirements. The goal is to cut down on the number of "small crappy studies," that don't include sufficient numbers of patients or veer off from the original study plan, NIH staffers say. The agency wants to "reengineer the process by which clinical investigators develop ideas for new trials," NIH officials explain in a **commentary today in** *The Journal of the American Medical Association* **(***JAMA***).**

Software tools for population design

	PFIM	PFIM Int.	PkStaMP	PopDes	PopED	POPT
Authors	Mentré	Mentré	Leonov	Ogungbenro	Hooker	Duffull
	et al	et al	(US)	(Manchester)	/Nyberg/Ueckert	(Otago, NZ)
	(Paris)	(Paris)			(Uppsala)	
Language	R	R	Matlab	Matlab	Matlab	Matlab
			CR		and R	
Available on website	Yes	Yes	Νο	Yes	Yes	Yes
GUI	No	Yes	Yes	Yes	Yes	No
Library of models	Yes	Yes	Yes	Yes	Yes	Yes
User defined models	Yes	Yes	Yes	Yes	Yes	Yes

BJCP British Journal of Clinical Pharmacology

Methods in Clinical Pharmacology Series

Methods and software tools for design evaluation in population pharmacokinetics– pharmacodynamics studies

Joakim Nyberg,¹ Caroline Bazzoli,² Kay Ogungbenro,³ Alexander Aliev,⁴ Sergei Leonov,⁵ Stephen Duffull,⁶ Andrew C. Hooker¹ & France Mentré⁷

¹Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, ²Laboratoire Jean Kuntzmann, Département Statistique, University of Grenoble, Grenoble, France, ³Centre for Applied Pharmacokinetic Research, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK, ⁴Institute for Systems Analysis, Russian Academy of Sciences, Moscow, Russia, ⁵AstraZeneca, Wilmington, DE, USA, ⁶School of Pharmacy, University of Otago, Dunedin, New Zealand and ⁷INSERM U738 and University Paris Diderot, Paris, France DOI:10.1111/bcp.12352

Correspondence

Professor France Mentré PhD, MD, Université Paris Diderot, INSERM, Paris 75018, France. Tel.: +33 1 57 27 77 59 Fax: + 33 1 57 27 75 21 E-mail: france.mentre@inserm.fr

Keywords

Fisher information matrix, nonlinear mixed effect models, optimal design, population design, population pharmacokinetics-pharmacodynamics

Received

30 July 2013 Accepted 9 February 2014

Accepted Article Published Online 18 February 2014

For most PKPD models, using any of the available software tools will provide meaningful results avoiding cumbersome simulation and allowing design optimization

PKPD example in HCV

- Good prediction of SE of all PKPD parameters
- Computing time
 - CTS = 5 days
 - Design evaluation with PFIM = 5 mins!

(Guedj, Bazzoli, Neumann, Mentré, Stat Med, 2011)

Citation: CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e46; doi:10.1038/psp.2013.19 © 2013 ASCPT All rights reserved 2163-8306/12

www.nature.com/psp

PERSPECTIVE

Current Use and Developments Needed for Optimal Design in Pharmacometrics: A Study Performed Among DDMoRe's European Federation of Pharmaceutical Industries and Associations Members

F Mentré¹, M Chenel², E Comets¹, J Grevel³, A Hooker⁴, MO Karlsson⁴, M Lavielle⁵ and I Gueorguieva⁶

- Optimal design methodology has been quickly adopted within the industry, especially in early phases where PKPD is more important
- High priority given to further development of adaptive optimal design in NLMEM with optimization not only of sampling times but of other design variables (e.g., doses)

Using HMC for robust designs in NLMEM with discrete data

- Optimal design depends on knowledge on model and parameters
 - Local planification: given a model and a priori values for population parameter
 - Widely used criterion: D-optimality (determinant of FIM)
- Alternative: Robust designs
 - Taking into account uncertainty on parameters (prior distribution)
 - Over a set of candidate models (as in MCP-MOD)
- Using HMC in Stan in an extension of R package MXFIM

(Rivière, Ueckert, Mentré, *Biostatistics*, 2016)

Application to robust designs for repeated count data

- Exemple: Daily count of events that we want to prevent
- Poisson model for repeated count response $P(y = k|b) = \frac{\lambda^k e^{-\lambda}}{k!}$
- Each patient observed at 3 dose levels (one placebo) during x days

- Several candidate models for the link between $log(\lambda)$ and dose
- λ: mean number of events / day

Five models of effect of dose on decreasing Poisson parameter

Design optimisation

Methods							
Constraints	Number of subjects	N = 60					
	Number of days	n = 10 days / dose					
	Number of doses	3 doses / patients					
	Choice of doses	$d_1 = 0$ (placebo) d_2 , d_3 from 0.1 to 1 (step 0.1, no replication)					
Combinatorial Optimization	Evaluation of FIM for all possible designs	5000 MC 200 HMC					
	For each model	DE-criterion on robust FIM (averaging for uncertainty on parameters)					
	Over 5 models	Compound DE-criterion (averaging for uncertainty on models and parameters)					

Results: robust optimal design for each model

ξ_{M4}=(0,**0.1,0.7**)

 $\xi_{M5} = (0, 0.5, 1)$

48

Results: loss of efficiency if wrong model

	M1 Full Emax	M2 Linear	M3 Log-Linear	M4 Emax	M5 Quadratic
ξ _{M1} =(0,0.2,0.4)	100%	47%	57%	78%	24%
ξ _{M2} =(0,0.9,1)	73%	100%	100%	44%	87%
ξ _{M3} =(0,0.9,1)	73%	100%	100%	44%	87%
ξ _{M4} =(0,0.1,0.7)	89%	68%	74%	100%	51%
ξ _{M5} =(0,0.5,1)	83%	88%	90%	59%	100%
ξ _{all} =(0,0.2,1)	91%	84%	84%	85%	83%

Efficiency greater than 80% for all models

Optimal design over 5 models $\xi_{all}=(0,0.2,1)$

Discussion on designs in pharmacometrics

- Evaluation and comparison of population designs without simulation using statistical approach
- Designs may CONSIDERABLY affects precision of estimation
- Results of population PKPD analyses increasingly used
 - Informative studies with small estimation errors needed

SPARSE-SAMPLING DESIGN = BEST INFORMATION IS NEEDED COMPLEX MODELS = DIFFICULT TO 'GUESS' GOOD DESIGNS

- Several software tools available: no excuses!
 - Define good population designs (ethical/financial reasons)
 - Anticipate 'fatal' population designs
 - Careful: lower bound (nonlinearity, small sample size)
 → CTS for key designs
- Ongoing work by statisticians & pharmacometricians
 - Model based adaptive designs

Outline

- **1. Pharmacometrics**
- 2. Statisticicians in pharmacometrics
- **3.** Model evaluation: a core set of graphs
- 4. Design in pharmacometrics
- **5.** Dose of favipiravir in Ebola infection
 - 6. Bridging the gap between statisticians and pharmacometricians

5. DOSE OF FAVIPIRAVIR FOR EBOLA INFECTION

- 2014: largest outbreak of Ebola infection in West Africa
 - 29 000 cases, 11 000 deaths
- 5 therapeutic trials were launched

3

S

2014 West Africa Ebola Epidemic

Favipiravir: a direct acting antiviral

- Nucleoside polymerase inhibitor
- Approved for influenza
- Developed by Toyama Chemicals
- Good tolerance
- Prioritized by WHO in 2014
- In Ebola infected mice treated with favipiravir: 100% survival vs 0% (untreated)

(Oesterreich et al, Antivir Res, 2014)

Evaluation of efficacy and antiviral activity of favipiravir in non-human primates for Ebola virus (EBV) PI: Hervé Raoul, BSL4, INSERM,France

Dose of favipiravir in EBV-infected patients?

PKVK Model for favipiravir in mice

Model for EBOV replication

S

Dose of favipiravir for EBV-infected patients \rightarrow 50% higher than for influenza

Mentré, Taburet, Guedj, Anglaret, Keïta, de Lamballerie, Malvy. Dose regimen of favipiravir for Ebola virus disease, *The Lancet Infectious Diseases* (2015)

Bouazza, Treluyer, Foissac, Mentré, Taburet, Guedj, Anglaret, de Lamballerie, Keïta, Malvy, Frange. Favipiravir for Children with Ebola, *Lancet* (2015)

RESEARCH ARTICLE

Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea

Daouda Sissoko^{1,2}, Cedric Laouenan^{3,4}, Elin Folkesson⁵, Abdoul-Bing M'Lebing⁶, Abdoul-Habib Beavogui⁷, Sylvain Baize^{8,9}, Alseny-Modet Camara⁵, Piet Maes^{10,11}, Susan Shepherd⁶, Christine Danel^{1,6,12}, Sara Carazo⁵, Mamoudou N. Conde⁶, Jean-Luc Gala^{13,14,15,16}, Géraldine Colin^{1,12,17}, Hélène Savini¹⁸, Joseph Akoi Bore^{10,19,20}, Frederic Le Marcis²¹, Fara Raymond Koundouno^{10,19,20}, Frédéric Petitjean⁶, Marie-Claire Lamah⁵, Sandra Diederich^{10,22}, Alexis Tounkara⁵, Geertrui Poelart⁵, Emmanuel Berbain⁵, Jean-Michel Dindart⁶, Sophie Duraffour^{10,11}, Annabelle Lefevre⁵, Tamba Leno⁵, Olivier Pevrouset⁶. Léonid Irenge^{13,16} N'Famara Bangoura⁵, Romain Palich⁶, Julia Hinzmann^{10,23}, Annette Kraus^{10,24}, Thierno Sadou Barry⁶, Sakoba Berette⁶, André Bongono⁶, Mohamed Seto Camara⁶, Valérie Chanfreau Munoz⁶, Lanciné Doumbouya⁶, Souley Harouna⁶, Patient Mumbere Kighoma⁶, Fara Roger Koundouno⁶, Réné Lolamou⁶, Cécé Moriba Loua⁶, Vincent Massala⁶, Kinda Moumouni⁶ Célia Provost⁶, Nenefing Samake⁶, Conde Sekou⁶, Abdoulaye Soumah⁶, Isabelle Arnould⁵, Michel Saa Komano⁵, Lina Gustin⁵, Carlotta Berutto⁵, Diarra Camara⁵, Fodé Saydou Camara⁵, Joliene Colpaert⁵, Léontine Delamou⁵, Lena Jansson⁵, Etienne Kourouma⁵, Maurice Loua⁵, Kristian Malme⁵, Emma Manfrin⁵, André Maomou⁵, Adele Milinouno⁵, Sien Ombelet⁵, Aboubacar Youla Sidiboun⁵, Isabelle Verreckt⁵, Pauline Yombouno⁵, Anne Bocquin⁹,

Caroline Carbonnelle⁹, Thierry Carmoi¹⁸, Pierre Frange²⁵, Stéphane Mely⁹, Vinh-Kim Nguyen²⁶, Delphine Pannetier⁹, Anne-Marie Taburet²⁷, Jean-Marc Treluyer²⁵, Jacques Kolie⁷, Raoul Moh^{1,12}, Minerva Cervantes Gonzalez^{3,4}, Eeva Kuisma^{10,28}, Britta Liedigk^{10,29}, Didier Ngabo^{10,28}, Martin Rudolf^{10,29}, Ruth Thom^{10,28}, Romy Kerber^{10,29}, Martin Gabriel^{10,29}, Antonino Di Caro^{10,30}, Roman Wölfel^{10,31}, Jamal Badir^{13,14}, Mostafa Bentahir^{13,16}, Yann Deccache^{13,16}, Catherine Dumont^{13,16}, Jean-François Durant^{13,15}, Karim El Bakkouri^{13,15}, Marie Gasasira Uwamahoro^{13,15}, Benjamin Smits^{13,15}, Nora Toufik^{13,14}, Stéphane Van Cauwenberghe^{13,16}, Khaled Ezzedine¹, Eric Dortenzio³², Louis Pizarro³², Aurélie Etienne^{3,4}, Jérémie Guedj^{3,4}, Alexandra Fizet^{8,9}, Eric Barte de Sainte Fare⁶, Bernadette Murgue³³, Tuan Tran-Minh¹⁷, Christophe Rapp¹⁸, Pascal Piguet⁵, Marc Poncin⁵, Bertrand Draguez⁵, Thierry Allaford Duverger⁶, Solenne Barbe⁶, Guillaume Baret⁶, Isabelle Defourny⁶, Miles Carroll^{10,28,34}, Hervé Raoul⁹, Augustin Augier⁶, Serge P. Eholie^{1,12,35}, Yazdan Yazdanpanah⁴, Claire Levy-Marchal³³, Annick Antierrens⁵, Michel Van Herp⁵, Stephan Günther^{10,29}, Xavier de Lamballerie³⁶, Sakoba Keïta³⁷, France Mentre^{3,4}, Xavier Anglaret^{1,12@*}, Denis Malvy^{1,2@*}, JIKI Study Group¹¹

JIKI Results (111 patients)

63

- No conclusion on the efficacy of the drug
- Encouraging conclusions on tolerance
- Favipiravir merits further studies
- Higher doses?
- Combination therapy?

RESEARCH ARTICLE

Favipiravir pharmacokinetics in Ebola-infected patients of the JIKI trial reveals concentrations lower than targeted

Thi Huyen Tram Nguyen¹, Jérémie Guedj¹, Xavier Anglaret^{2,3}, Cédric Laouénan^{1,4}, Vincent Madelain^{1,4}, Anne-Marie Taburet⁵, Sylvain Baize⁶, Daouda Sissoko^{2,7}, Boris Pastorino⁸, Anne Rodallec⁸, Géraldine Piorkowski⁸, Sara Carazo⁹, Mamoudou N. Conde¹⁰, Jean-Luc Gala^{11,12,13,14}, Joseph Akoi Bore^{15,16,17}, Caroline Carbonnelle¹⁸, Frédéric Jacquot¹⁸, Hervé Raoul¹⁸, Denis Malvy^{2,7}, Xavier de Lamballerie⁸, France Mentré^{1,4}*, on behalf of the JIKI study group¹

PK data from JIKI trial (2016)

Trough concentrations (8 to 9 AM) at Day 2 and Day 4 in 66 patients

- Drop in concentration between D2 and D4
- D4 concentrations lower than expected
- Concentrations in JIKI trial too low to strongly inhibit viral replication
- EC₅₀ for EBV = 10.5 μg/mL (Mayinga 1976) = 31-63 μg/mL (Kikwit 1995/E718)
- Protein binding 50%

PKVK Model for favipiravir in NHP

- Model accounts for concentration dependent aldehyde oxidase inhibition
- Enzyme dependent elimination rate increased over time and was higher in NHPs from Mauritian than from Chinese origin

Proposed doses for BSL4 studies (Mauritian NHP): 250/150/180 mg/kg BID

Madelain, Guedj, Mentré, Nguyen, Jacquot, Oestereich, Kadota, Yamada, Taburet, de Lamballerie, Raoul. Favipiravir pharmacokinetics in non-human primates: insights for future efficacy studies of haemorrhagic fever viruses, *Antimicrobial Agents Chemotherapy (2016)*

67

NHP model in French BSL4 (untreated)

Piorkowsky, Jacquot, Quérat, Carbonnelle, Pannetier, Mentré, Raoul, de Lamballerie. Implementation of a non-human primate model of Ebola disease: Infection of Mauritian cynomolgus macaques and analysis of virus population, *Antiviral Research (2017)*

Studies ongoing in EBV-infected NHP in BSL4 in France with various doses of favipiravir

Discussion on dose of favipiravir in Ebola

- Complex PK of favipiravir: concentration and time dependent aldehyde oxidase inhibition & genetic polymorphism
- High EC50 for EBV: Higher doses needed and longer treatment
- Trials in patients before NHP studies and before PK studied in healthy volunteers with high doses
- Combination studies in NHP in preparation
- Be ready for next outbreak of Ebola Virus (and other hemorrhagic fevers)

Will There Be a Cure for Ebola?

Anthony P. Cardile, Travis K. Warren, Karen A. Martins, Ronald B. Reisler, and Sina Bavari

US Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702; email: anthony.p.cardile.mil@mail.mil

Annu. Rev. Pharmacol. Toxicol. 2017. 57:329-48

First published online as a Review in Advance on December 7, 2016

The Annual Review of Pharmacology and Toxicology is online at pharmtox.annualreviews.org

This article's doi: 10.1146/annurev-pharmtox-010716-105055

Copyright © 2017 by Annual Reviews. All rights reserved

Keywords

BCX4430, brincidofovir, favipiravir, GS-5734, ZMapp, convalescent plasma

Abstract

Despite the unprecedented Ebola virus outbreak response in West Africa, no Ebola medical countermeasures have been approved by the US Food and Drug Administration. However, multiple valuable lessons have been learned about the conduct of clinical research in a resource-poor, high risk–pathogen setting. Numerous therapeutics were explored or developed during the outbreak, including repurposed drugs, nucleoside and nucleotide analogues (BCX4430, brincidofovir, favipiravir, and GS-5734), nucleic acid–based drugs (TKM-Ebola and AVI-7537), and immunotherapeutics (convalescent plasma and ZMapp). We review Ebola therapeutics progress in the aftermath of the West Africa Ebola virus outbreak and attempt to offer a glimpse of a path forward.

5. BRIDGING THE GAP between Pharmacometricians and Biostatisticians

nature publishing group

Statisticians and Pharmacokineticists: What They Can Still Learn From Each Other

S Senn¹

Examples are given of how the practice of statistics could be improved if statisticians showed a greater awareness of pharmacokinetic and pharmacodynamic modeling. Some examples are also given where a wider appreciation of statistical theory would improve current approaches to pharmacometrics. Areas in which the two disciplines are in agreement but have failed to have as much influence on others in drug development as they ought are also considered. It is concluded that there would be much benefit in increasing collaboration between these disciplines.

'The battle lines were clear'

On the one side were the forces of light:

those who liked models used biological insights, generally welcomed data from disparate sources and were not afraid to try various bold and ingenious strategies for putting models and data together

On the other side were the forces of darkness:

a bunch of dice throwers and hypothesis testers with an inane obsession with intention to treat

Bridging the gap

Pitfalls in pharmacometrics

- Handling of data (per protocol, ITT, missing, dropout)
 - problem especially in confirmatory analysis
- Multiple testing in model building, covariates analysis ...
 - Lack of control of type I error
- Model evaluation, checking assumptions
 - No standard procedure
- Often lacking model based analysis plan
- Design / sample size (uncertainty...)

From Stacey Tannenbaum (Astellas Pharma), WCoP 2016

Pitfalls in biostatistics

'Stuck' to standard linear or standard empirical models

Like few assumption models

- whereas PKPD based on centuries of physiology in pharmacology
- Reluctance to use new software/ tools, and not totally pre-specified analysis
 - 'fear' for NLMEM

Tension between PMX and Stats

Kowalski (2015), "**My Career as a Pharmacometrician and Commentary on the Overlap Between Statistics and Pharmacometrics in Drug Development**", *Statistics in Biopharmaceutical Research*, 7:148-159.

- Mechanistic versus empirical models
- Adequacy of the model fit and predictive performance
- Exposure-response relationships
- Exposure versus dose
- Inadequate understanding of statistics
- Use of assumption-rich models
- Drawing confirmatory conclusions from exploratory data analysis

From Stacey Tannenbaum (Astellas Pharma), WCoP 2016

Benefits: evolution of both groups

- More standardization in pharmacometrics
- More modelling in biostatistics (analysis of longitudinal data in clinical trials)

Top 16 universities for Clinical, Pre-clinical and Health 2015-16

Rank	Institution	Country	Master of	Master of	Master of	
			Biostatistics	Pharmacometrics	Computational	
					Biology	
1	University of Oxford	UK	$oldsymbol{V}$ (MSc Applied Stats)	Х	X	
2	Harvard University	USA		Х		
3	University of Cambridge	UK	Х	Х		
4	University College London	UK	\checkmark	Х	Х	
=5	University of California, Berkeley	USA		Х	$\sqrt{(1^{ m st}~ m year~PhD)}$	
=5	Imperial College London	UK	Х	Х	Х	
7	Stanford University	USA	(1 st year PhD)	Х	$\sqrt{$ (1 $^{ m st}$ year PhD)	
8	King's College London	UK	Х	Х	Х	
9	Johns Hopkins University	USA		Х	Х	
10	Columbia University	USA		Х	Х	
11	University of Toronto	Canada		Х	X (undergraduate training)	
12	University of Edinburgh	UK	Х	Х	Х	
13	Karolinksa Institute	Sweden	X	X	Х	
14	Duke University	USA		X	$\sqrt{(1^{st} year PhD)}$	
=15	University of California,	USA		X	$\sqrt{(MSc Biomathematics)}$	
	Los Angeles					
=15	University of Melbourne	Australia		Х	Х	

From Julie Simpson (University of Melbourne), WCoP 2016

Master of Biostatistics (11 Universities): Skill set for PK-PD modelling?

Time for Quantitative Clinical Pharmacology: A Proposal for a Pharmacometrics Curriculum

N Holford¹ and MO Karlsson²

Week	Lecture topic
1	Optimal design of PKPD studies
2	Model building strategies
3	Model diagnostics
4	Evaluation methods such as bootstrapping, predictive checks
5	Hypothesis testing based on randomization tests
6	Differential equation defined models
7	Non-continuous data analysis (binomial, categorical, frequency, time to event)
8	Bayesian estimation
9	Mixed effect methods
10	Disease Progression models
11	Advanced PKPD models
12	Simulation methods (deterministic and stochastic)

Table 2 Topics for an advanced pharmacometrics course

PKPD, pharmacokinetic-pharmacodynamic.

- SxP: Special Interest Group created in 2016
- Promote collaboration between Statisticians and Pharmacometricians
 - to enable each discipline to learn and grow from the other
 - to develop innovative approaches to model informed drug development
- Steering Committee
 - Co-chairs: Bret Musser (Merck) & Matt Rotelli (Lilly)
 - Fred Balch (U Utah), Rob Bies (U Buffalo), Brian Corrigan (Pfizer), Kevin Dykstra (qPhametra), Manolis Efthymios (EMA), Jonathan French (Metrum), Lena Friberg (U Uppsala), Alan Hartford (Abbvie), France Mentre (U Paris Diderot & INSERM), Jose Pinheiro (J&J), Dionne Price (FDA), Garry Rosner (Johns Hopkins), Vikram Sinha (FDA), Brian Smith (Novartis), Jing Su (Merck), Neelima Thaneer (BMS), Jingtao Wu (Takeda)
- Membership open to everyone
- Join http://community.amstat.org/sxp/home

■ Statistics and Pharmacometrics (SxP) →

Latest Top

Торіс	Users	Replies	Views	Activity
About the Pharmacometrics with ASA (PASA) category [image] The Statistics and Pharmacometrics Interest Group (SxP) was named in 2016 and is chartered by both the American Statistical Association (ASA) and International Society of Pharmacometrics (ISOP). This Interest read more	(ii)	0	415	Aug '16
When is a result worth noting? A quick thought on pharmacometrics and multiplicity	₿ 🛛 🖗 🖪	5	463	1h
Variability, Uncertainty, and Error	M 🕲 M	2	125	2d
Optimal PK sampling shedule	() () () () () () () () () () () () () (5	246	2d
What are the sticking points between statistics and pharmacometrics?	M R I 6	4	251	4d
Survey to Help in Planning	B	0	12	5d
2016 ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop	0	0	141	Oct '16
Announcing SxP (Statistics and Pharmacometrics Interest Group)	(ii)	0	318	Jun '16
My Career as a Pharmacometrician and Commentary on the Overlap Between Statistics and Pharmacometrics in Drug Development	(i)	0	569	Feb '16

There are no more Statistics and Pharmacometrics (SxP) topics.

SxP organizes sessions in both statistics & pharmacometrics conferences

- PAGE (June 2016): First announcement of SxP
- ACOP7 (Oct 2016): Meet the ASA/ISoP Stat SIG
- Joint Statistical Meeting (July 2016): A mixer on SxP SIG
- WCoP 2016 (August 2016)

Session: Bridging the gap between pharmacometricians and statisticians

- ASA/FDA Regulatory-Industry Statistics Workshop (Sept 2016)
 Panel session: Moving pharmacometrics and statistics beyond a marriage of convenience - Improving discipline synergy and drug development decision making
- ASCPT (March 2017)

Symposium: Using biomarkers to predict registration endpoints: a look inside the crystal ball

• Joint Statistical Meeting (July 2017)

Session: Pharmacometric Programming

- Joint Conference on Biometrics & Biopharmaceutical Statistics (August 2017) Session: Collaboration space between statistics and pharmacometrics: Opportunity and Challenges
- ACOP8 (Oct 2017)

Symposium: Integrating quantitative disciplines - Making model-informed discovery and drug development (MID3) work in practice

Personal perspectives & hopes

- 1. Model-based analysis of pivotal trials in drug development and academic research
- 2. Model-based treatment personalization
- 3. Model-based evaluation of treatments in the developing world

Pharmacometricians AND

(Bio)Statisticians

Help decrease disease burden in the world

- better drugs/ treatments
- better targeted to each patient

In this World some People will always th row stones in your path. It de pends on you what you make from flient...

A WALL or a BRIDGE!

We build too many walls and not enough bridges.